

PULL CABLES

Flexball has a wide range of wire cables that is the result of the experience of 50 years of design of pull and push-pull cables for the most different applications: from the simple pull throttle cable to the more sophisticated gear shifter cable or to the very performing cable of a power transmission pump.

Wire rope controls are only used in tension applications and can be matched with a variety of handles and levers on one side and several attachments (blades, clevis, threaded terminal) on the other side.

The pull cable is schematically composed of conduit, wire and end fittings. The mixing of these three basic elements determines a big choice of cables.

Type of conduit	Pull load (N)	Bending radius (mm)	Conduit external diameter (mm)	Conduit internal diameter (mm)	Conduit colour	In liner tube
012	800	100	7	2.3		POM
015	1000	80	6.9	2.3		Teflon
020	1200	80	6	2.3	Black	РОМ
030	3500	120	10	4.3		РОМ
040	6000	140	13.4	7.4		POM

WIRE FOR PULL CABLES

Wire diameter (mm)	Pull load (N)	Structure	Material	
	800	7 wires		
2	1000	19 wires		
2	1200	49 wires		
	1400	133 wires	Stainless steel	
2.5	1800	19 wires	AISI316	
3	2500	19 wires		
4	3500	49 wires		
6	6000	133 wires		
6HD	20000	133 wires	R2060	

TPUSH-PULL CABLES

Push-pull control cables provide an efficient, highly reliable and lightweight solution of remote actuation at long distances. Push-pull cable main feature is the high flexibility and its capability to adapt to the different applications. Push-pull cables can be used in the agriculture, industrial, automotive, marine and railway sectors.

Basically the push-pull cable is made of a conduit, a wire which slides inside the conduit and two terminals, one on each side of the cable. The end fittings are the linkage between the cable and other mechanical devices.

The construction materials are plastic or metal and are chosen depending on the application and environmental conditions. Metals are usually steel, stainless steel or brass.

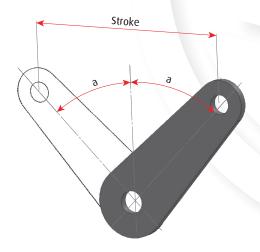
In addition to the cables reported in this catalogue, it is available a wide variety of special cables; our technicians are at your disposal to guide you in the selection of the right cable for your application.

Cables are basically classified according to these following main features:

- length
- force to be transmitted
- stroke
- type of end fitting

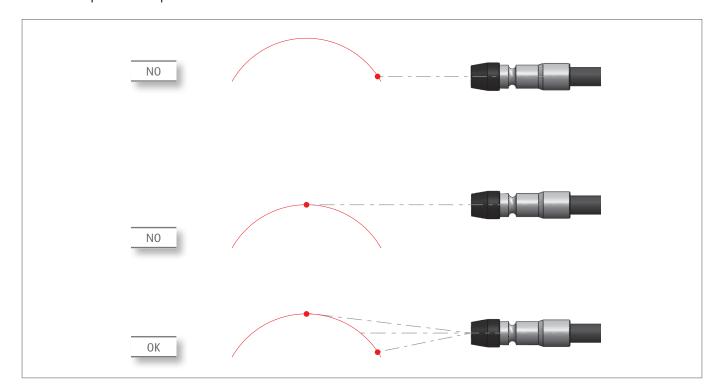
Furthermore, it must be taken into account any feature related to the specific working conditions, such as temperature, environment, flexibility, efficiency, lifetime, duty cycle, etc. In the following pages are described the different types of cables classified on the base of the features just described here above.

Type of cable	Push load (N)	Pull load (N)	Bending radius (mm)	External conduit diameter (mm)	Wire diameter (mm)		Conduit colour	
E2	300	800	100	7	1.9		Dlade	
E3	400	1000	120	8.5			Black	
V4	500	1200	120	8	3.65			
V5	700	1500	140	10	4.7 5			
V6	900	2000	160	11.5	5.7		Yellow	
V7	1200	2500	180	12.1	6			
V8	1400	2000	200	14	7.6			
01	300	800	80	7	2.7			
07	800	2000	150	9.5	3.	7		
07E	800	1800	150	9.5	3.6		Black	
010	1000	2000	140	9.2			DIGCK	
017	1000	2000	160	9	3.	2		
018	2000	4500	200	14.5	6.	4		



BENDING RADIUS

The table in the previous page reports the recommended minimum bending radius for each type of cable. Higher is the bending radius, better is the performance of the cable and longer is its lifetime.


CALCULATION OF THE STROKE

In case of linear actuation, to understand the necessary stroke it is enough to measure the difference between the initial position of the actuation point and the end position after the cable has been full operated.

If the cable is connected to the lever, the connection point moves on an arc profile but the travel is its segment. Cable fitting with G and T shapes are indicated to operate in these conditions because the rods are running into a swiveling sleeve that can compensate the deflection. Also cable fitting with F shape can operate in this condition, but it is necessary to use a bulk-head swivel to compensate the deflection.

To guarantee the longest operating life and the best efficiency of the cable, the deflection has to be reduced as much as possible. One of the factors that contributes to the deflection's reduction is how the cable is mounted: the cable has to be mounted as per the side picture.

BACKLASH

The backlash is caused by the free play between the core (wire) and the conduit. It is measured as the lost motion (on the output) under light input forces applied on the cable. Backlash increases proportionally with the bending degrees and it becomes evident during cable's changes of direction.

The backlash is related to diameter differences between core and conduit, the input force and the total number of bending degrees of the cable once installed. Here below, we summarize the backlash of each type of cables, calculated considering a total bending of 360° degrees.

TYPE OF CABLES	BACKLASH
E2/E3	3 mm
V4	3 mm
V5	3.2 mm
V6	3.5 mm
V7	3 mm
V8	3.5 mm
01	1.3 mm
07	1.2 mm
07E	1.9 mm
010	1.3 mm
017	1.3 mm
018	2.6 mm

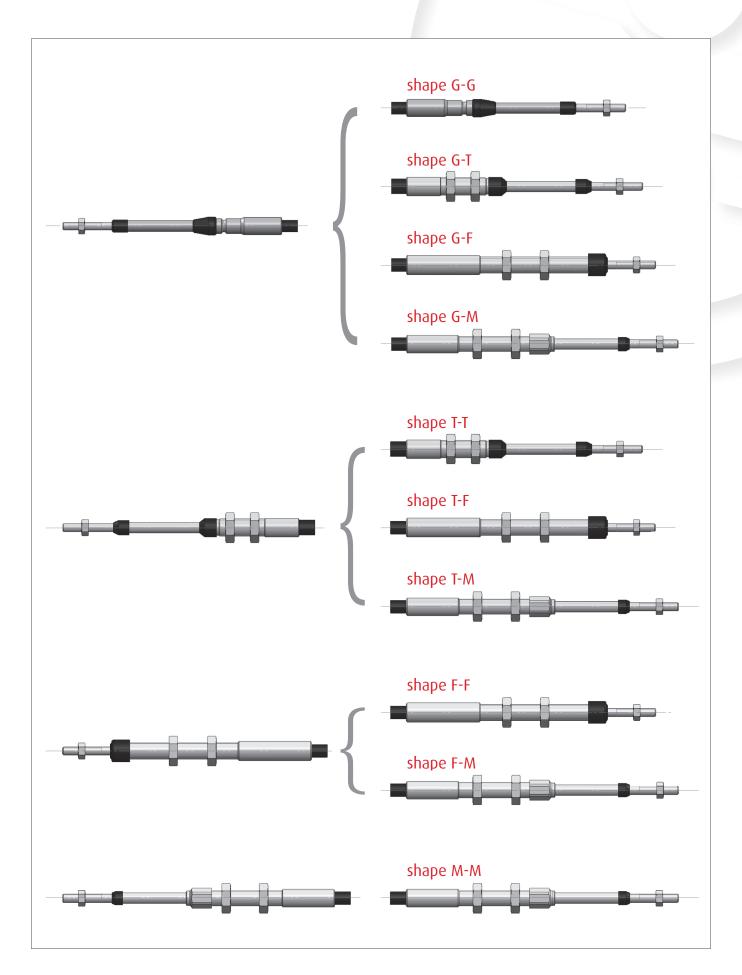
EFFICIENCY

Efficiency is the relation between the input force necessary to move the load applied on the other end of the cable and the output load. The relations between input force and output load are the following:

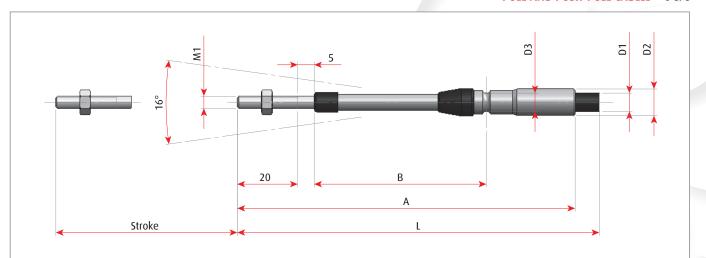
- input force = output load x bending factor
- output load = input force / bending factor

The bending factor is related to the total bending degrees of the cable installation, as shown in the following table:

Total degrees of bending in cable installation	90°	180°	270°	360°
Bending factor	1.2	1.4	1.6	1.8

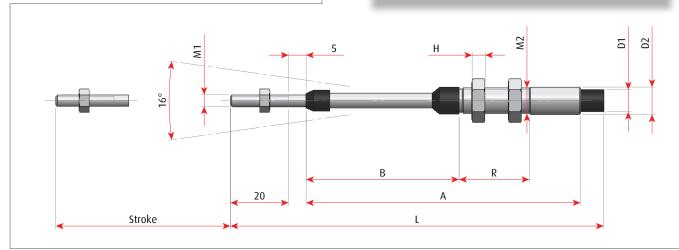

WORKING TEMPERATURE

Flexball push-pull cables can operate from -20°C to +70°C with standard lubricant. In case push-pull cables are lubricated with special grease, the operating temperature field is from -40°C to 110°C. To operate at temperatures beyond standard specification, please contact Flexball technical department as a high temperature conduit proof is available.



END FITTINGS FOR PUSH-PULL CABLES

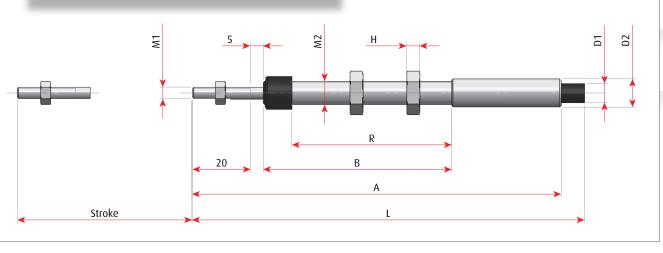
Several kind of end fittings are available as reported here below.

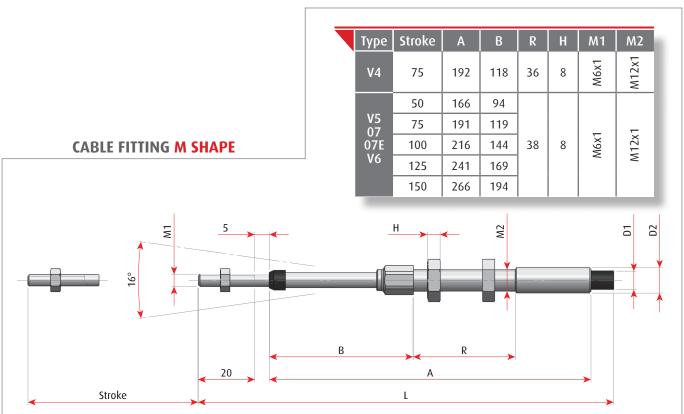


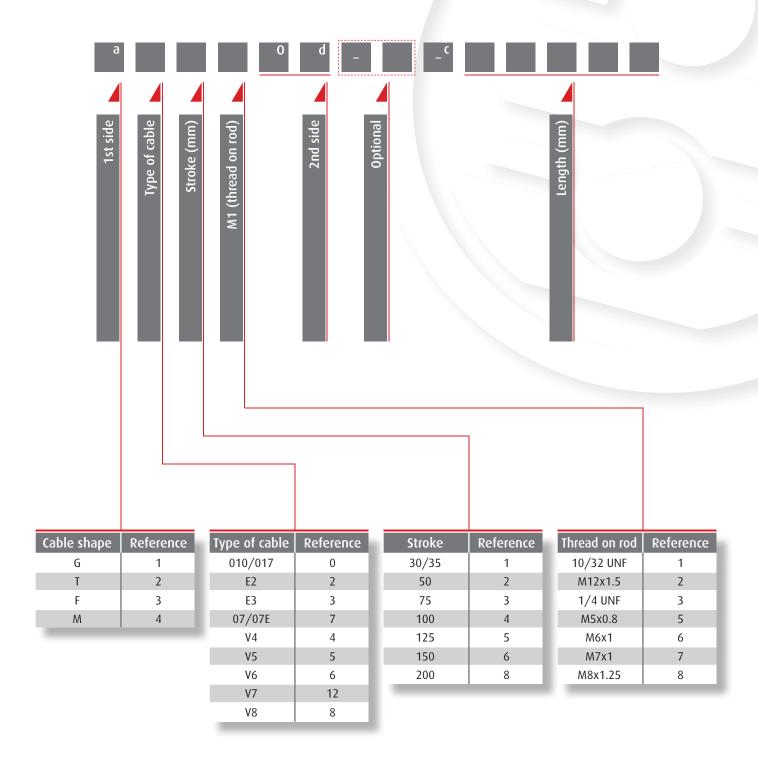
CABLE FITTING G SHAPE

Ī	Туре	Stroke	А	В	M1
		50	151	84	
1	E2 E3 01	75	176	109	M5x0.8 10/32
1		100	201	134	M5>
		125	229	162	
		50	151	80	
	V4	75	176	105	M5x0.8
1	V 4	100	201	130	M5;
		125	226	155	
	V5	50	163	83	
		75	188	108	
	07 07E	100	213	133	M6x1
	۷6	125	238	158	We
	010	150	263	183	
		200	313	223	
		50	167	95	
		75	192	120	
	٧7	100	217	145	M8x1.25
	V7 V8	125	242	170	W8X
		150	267	195	
		200	317	245	

CABLE FITTING T SHAPE


Туре	Stroke	Α	В	R	Н	M1	M2
	50	120	80			(<u>F</u>	2
E3	75	155	105	30	5	M5x0.8 (10/32 UNF)	M11x1 (M12x1.75)
ED	100	180	130	30			
	125	208	158			(1	
	50	143	88	30			
V4	75	168	113		5	M5x0.8	M11x1
V 4	100	193	138				
	125	218	163				
	50	160	85	37	8	M6x1	M14x1 (M16x1.5)
V5 07	75	185	110				
07E	100	205	135				
V6 010	125	235	160				
017	150	260	185				
	200	305	237				
	50	196	91				
	75	221	116			M8x1.25	
V7 V8	100	246	141	47	8		M16x1.5
V8	125	271	166	4/	0		
	150	296	191				
	200	247	247				




Туре	Stroke	А	В	R	Н	M1	M2
	50	112	65	52	5	M5x0.8 (M6x1)	M10x1
V4	75	137	90	77			
	100	162	115	102			2
V5	50	134	79	68			M12x1
07	75	159	104	93	8	M6x1 (M7x1)	
07E V6	100	184	129	118			
010	125	209	154	143			
017	150	234	179	168			
	50	132	76	59		M8x1.25 (M10x1.5)	M16x1.5
	75	157	101	84	% M8X1.25		
V7 V8	100	182	126	109			
- •0	125	207	151	134			×
	150	232	159	159			

CABLE FITTING F SHAPE

Notes:

- If the cable has different shapes on the two ends:
 - the one which has the lower reference takes the first position (a)
 - the other end takes position (b)
- Position c: if the cable is type 07E (economical), please replace the "-" with "*"

Flexball Italiana S.r.l.

Via San Luigi 13/A - 10043 Orbassano (To) - Italy

Tel 0039.011 90.38.900 - Fax 0039.011 90.38.747 info@flexballitaliana.com

